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Abstract

Forward genetic screens are powerful tools for the discovery and functional annotation of genetic 

elements. Recently, the RNA-guided CRISPR (clustered regularly interspaced short palindromic 

repeat)-associated Cas9 nuclease has been combined with genome-scale guide RNA libraries for 

unbiased, phenotypic screening. In this Review, we describe recent advances using Cas9 for 

genome-scale screens, including knockout approaches that inactivate genomic loci and strategies 

that modulate transcriptional activity. We discuss practical aspects of screen design, provide 

comparisons with RNA interference (RNAi) screening, and outline future applications and 

challenges.

A key goal in genetic analysis is to identify which genes contribute to specific biological 

phenotypes and diseases. Hypothesis-driven, reverse genetic methods take a ‘genotype-to-

phenotype’ approach by using prior knowledge to test the causal role of specific genetic 

perturbations. By contrast, forward genetic screens are ‘phenotype-to-genotype’ approaches 

that involve modifying or modulating the expression of many genes, selecting for the cells 

or organisms with a phenotype of interest, and then characterizing the mutations that result 

in those phenotypic changes.

Initial forward genetic experiments carried out on model organisms such as yeast, flies, 

plants, zebrafish, nematodes and rodents1–9 relied on the use of chemical DNA mutagens 

followed by the isolation of individuals with an aberrant phenotype. These screens have 

uncovered many basic biological mechanisms, such as RAS and NOTCH signalling 

pathways10, as well as molecular mechanisms of embryonic patterning11,12 and 

development13,14.

A major shortcoming of DNA-mutagen-based screens is that the causal mutations in the 

selected clones are initially unknown. Identifying the causal mutations can be costly and 

labour intensive, requiring linkage analysis through crosses with characterized lines. These 

challenges can now be more easily addressed by mapping mutations using next-generation 

sequencing (NGS)15 and by replacing chemical mutagens with viruses and transposons, 
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which use defined insertion sequences that are amenable to sequencing-based analysis16–18. 

An additional limitation of random mutagenesis approaches is that the resulting mutants are 

typically heterozygotes, which can mask recessive phenotypes. In model organisms, 

homozygosity can be achieved by intercrossing progeny derived from the initial 

heterozygous mutant. In mammalian cell culture, recessive screens have been limited to 

near-haploid cell lines19,20 or to cell lines that are deficient in Bloom helicase (BLM), which 

have an increased rate of mitotic recombination21.

Over the past decade, forward genetic screens have been revolutionized by the development 

of tools that use the RNA interference (RNAi) pathway for gene knockdown. RNAi is a 

conserved endogenous pathway in which mRNA molecules are targeted for degradation on 

the basis of sequence complementarity22,23, thus facilitating design and scalability of the 

tools. Several RNAi reagents have been developed, including long double-stranded RNA 

(dsRNA)24, synthetic small interfering RNA (siRNA)25, short hairpin RNA (shRNA)26 and 

shRNAs embedded in microRNA (miRNA) precursors (shRNAmirs)27,28. Screens using 

RNAi tools have provided a wealth of information on gene function1,26,29–32, but their 

utility has been hindered by incomplete gene knockdown and extensive off-target activity, 

making it difficult to interpret phenotypic changes33–35.

Sequence-specific programmable nucleases have emerged as an exciting new genetic 

perturbation system that enables the targeted modification of the DNA sequence itself. In 

particular, the RNA-guided endo-nuclease Cas9 (REFS 36–41) from the microbial adaptive 

immune system CRISPR (clustered regularly interspaced short palindromic repeat) provides 

a convenient system for achieving targeted mutagenesis in eukaryotic cells42,43. Cas9 is 

targeted to specific genomic loci via a guide RNA, which recognizes the target DNA 

through Watson–Crick base pairing. Therefore, Cas9 combines the permanently mutagenic 

nature of classical mutagens with the programmability of RNAi.

In this Review, we discuss recent Cas9-based functional genetic screening tools, including 

genome-wide knockout approaches and related strategies using modified forms of Cas9 to 

cause gene knockdown or transcriptional activation in a non-mutagenic manner44–49. We 

discuss how these newer approaches compare with and complement existing RNAi-based 

screening technologies. We also present some practical considerations for designing Cas9-

based screens and potential future directions for targeted screening technology development.

Mechanisms of perturbation

Loss-of-function perturbations mediated by Cas9 and RNAi

Cas9 nuclease is a component of the type II CRISPR bacterial adaptive immune system that 

has recently been adapted for genome editing in many eukaryotic models (reviewed in REFS 

50,51). Targeted genome engineering with Cas9 and other nucleases exploits endogenous 

DNA double-strand break (DSB) repair pathways to create mutations at specific locations in 

the genome. Although there is a large diversity of DSB repair mechanisms, genome editing 

in mammalian cells primarily relies on homology-directed repair (HDR), in which an 

exogenous DNA template can facilitate precise repair, as well as non-homologous end-

joining (NHEJ), which is an error-prone repair mechanism that introduces indel mutations at 
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the repair site52. To induce DSBs, Cas9 can be targeted to specific locations in the genome 

by specifying a short single guide RNA (sgRNA)41 to complement the target DNA. For the 

commonly used Streptococcus pyogenes Cas9, the sgRNA contains a 20-bp guide sequence. 

The target DNA needs to contain the 20-bp target sequence followed by a 3-bp protospacer-

adjacent motif (PAM), although some mismatches can be tolerated (see below).

Loss-of-function mutations mediated by Cas9 nuclease are achieved by targeting a DSB to a 

constitutively spliced coding exon. When a DSB is repaired by NHEJ, it can introduce an 

indel mutation. This frequently causes a coding frameshift, resulting in a premature stop 

codon and the initiation of nonsense-mediated decay (NMD) of the transcript (FIG. 1). 

NMD might not be active for all genes and is not necessarily required for Cas9-mediated 

knockout, as an early frameshift mutation or large indels might be sufficient to produce a 

non-functional protein. Early exons are preferred for targeting, as indels in these exons have 

a higher probability of introducing an early stop codon or a frameshift of a larger portion of 

the protein53. As DSB induction and NHEJ-mediated repair occur independently at each 

allele in diploid cells, targeting by Cas9 results in a range of biallelic and heterozygous 

target gene lesions in different cells. We and others44–47 have used the simple, RNA-

mediated programmability of Cas9 and its nuclease function to conduct genome-scale 

knockout screens in mammalian cell cultures. These initial screens uncovered both known 

and novel insights into gene essentiality and resistance to drugs and toxins. Most 

importantly, Cas9-based screens displayed high reagent consistency, strong phenotypic 

effects and high validation rates, demonstrating the promise of this approach.

Although the application of Cas9 to targeted screening is relatively recent, similar 

approaches based on RNAi technologies have been extensively used over the past decade in 

mammalian cell culture and in vivo1,3,26,29,30,54–58. RNAi is a conserved natural pathway 

that is triggered by various types of dsRNAs (often single-stranded RNAs folded into 

hairpin structures) and that results in the selective downregulation of transcripts with 

sequence complementarity to one strand of the dsRNA23. Natural sources of dsRNAs 

include endogenous mi RNAs59 and exogenous linear dsRNAs that are typically introduced 

into cells by invading viruses60–62. Artificial targeted gene knockdown is achieved by the 

delivery of a wide range of designed RNAi reagents55,63, including long dsRNAs24, 

siRNAs25, shRNAs26 and miRNA-embedded shRNAs27,28. The delivery of RNAi reagents 

is achieved by transfection of pre-synthesized RNA (for siRNAs and dsRNAs), by 

transfection of DNA (which encodes a promoter-driven shRNA or shRNAmir) or by viral 

transduction methods using lentiviral, retroviral or transposon constructs with a cloned 

shRNA or shRNAmir cassette (FIG. 1). In contrast to RNA polymerase III (Pol III)-driven 

expression of shRNAs or sgRNAs, Pol II-driven expression of shRNAmirs can be 

temporally controlled and genetically restricted across tissues63. Most RNAi reagents are 

nucleolytically processed by the enzyme Dicer into functional siRNAs. Before processing 

by Dicer, shRNAmirs require nuclear processing by Drosha–DGCR8, but this step is usually 

bypassed with other reagents63. Regardless of the reagent type, the resultant siRNAs are 

then loaded into the RNA-induced silencing complex (RISC), which is guided to the target 

mRNA molecule by the siRNA to initiate mRNA degradation or translational inhibition23.
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Catalytically inactive Cas9 for transcriptional modulation

In addition to gene knockout that is mediated by the error-prone repair of targeted DSBs and 

RNAi-based gene knockdowns, catalytically inactive Cas9 (dCas9) and various fusions of 

either dCas9 or sgRNAs with transcriptional activator, repressor and recruitment domains 

have been used to modulate gene expression at targeted loci without introducing irreversible 

mutations to the genome. The dCas9-based transcriptional inhibition and activation systems 

are commonly referred to as CRISPRi and CRISPRa, respectively (FIG. 2). dCas9 by itself 

can have a repressive effect on gene expression, which is probably due to steric hindrance of 

the components of the transcription initiation and elongation machinery64,65 (FIG. 2Aa). 

Although this approach has been successful in Escherichia coli, the degree of repression 

achieved in mammalian cells has been modest64–68. Chromatin-modifying repressor 

domains have been fused to dCas9 in an attempt to improve repression in mammalian cells66 

(FIG. 2Ab). However, the magnitude of repression displayed high variability across sgRNAs 

even with these fusion proteins66. To achieve a more robust effect, sgRNA libraries tiling 

the upstream regions of genes were constructed, and the variability in the measured effect on 

transcription was used to infer rules for the design of more-potent repressive sgRNAs48. 

These rules included the sgRNA target location relative to the transcription start site, the 

length of the protospacer and the spacer nucleotide composition features48. Although dCas9-

mediated repression and RNAi-based tools seem to result in a similar molecular effect, 

dCas9 repression occurs by inhibiting transcription, whereas RNAi acts on the mRNAs in 

the cytoplasm. These differences might result in varying cellular responses.

Whereas loss-of-function screens can be conducted using a variety of both established and 

new Cas9-based tools, gain-of-function screens have been limited to cDNA overexpression 

libraries69. The coverage of such libraries is incomplete owing to the difficulty of cloning or 

expressing large cDNA constructs. Furthermore, these libraries often do not capture the full 

complexity of transcript isoforms, and they express genes independently of the endogenous 

regulatory context. To facilitate Cas9-based gain-of-function screens, synthetic activators 

were constructed by fusing dCas9 with transcriptional activation domains such as VP64 or 

p65 (REFS 68,70–73) (FIG. 2Ba). However, these fusions only led to modest activation 

when delivered with a single sgRNA in mammalian cells. The delivery of multiple sgRNAs 

targeting the same promoter region improved target gene activation70–72, but this was still 

not reliable enough to implement genome-wide activation screens. To amplify the signal of 

dCas9 fusion effector domains, a repeating peptide array of epitopes fused to dCas9 was 

developed together with activation effector domains fused to a single-chain variable 

fragment (ScFv) antibody74 (FIG. 2Bb). Similar to the repression screen, a tiling approach 

was then used to infer rules for potent sgRNAs, followed by the design of a genome-wide 

library and the implementation of an activation screen48.

We recently took advantage of a crystal structure of Cas9 in complex with a guide RNA and 

target single-stranded DNA (ssDNA)75 to rationally design an efficient Cas9 activation 

complex composed of a dCas9 fusion protein and modified sgRNA49 (FIG. 2Bc). This 

design was guided by the following principles: the use of alternative attachment positions to 

recruit endogenous transcription machineries more effectively; the mimicking of natural 

transcriptional activation mechanisms by recruiting multiple distinct activators that act in 
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synergy to drive transcription; and the identification of design rules for efficient positioning 

of the Cas9 activation complex on the promoter. We used this design to implement a 

genome-wide gain-of-function screen49 to identify genes that confer vemurafenib resistance 

in melanoma cells when upregulated.

Modified scaffolds with different RNA-binding motifs were recently developed for both 

activation and repression of gene expression76 (FIG. 2C). A combination of these scaffolds 

enabled the execution of complex synthetic transcriptional programmes with the 

simultaneous activation and repression of different genes.

The most apparent advantage of dCas9-mediated transcriptional activation is that induction 

originates from the endogenous gene locus (unlike expression from an exogenous cDNA 

construct). Yet, the extent to which synthetic transcriptional modulators preserve the 

complexity of transcript isoforms and different types of feedback regulation remains to be 

tested77,78. In one tested case49, two transcript isoforms were expressed at equal levels, 

suggesting that transcript complexity can be preserved. One important advantage of cDNA 

expression vectors is the ability to easily express mutated genes without modifying the 

endogenous genomic loci.

Libraries and screening strategies

Functional screens in cultured cells are conducted in two general formats: arrayed or pooled 

(FIG. 3). In an arrayed format, individual reagents are arranged in multiwell plates with a 

single reagent (or a small pool of reagents) per well. As each reagent is separately prepared, 

arrayed resources are more expensive and time consuming to produce than reagents for 

pooled screening, and conducting arrayed screens can require special facilities that use 

automation for the handling of many plates. However, in arrayed screens, where each well 

has a single known genetic perturbation, a much wider range of cellular phenotypes can be 

investigated using fluorescence, luminescence and high-content imag analysis54,79–81 (FIG. 

3).

For arrayed screens, reagents can be delivered by either transfection or viral transduction. 

Using transfection, a large amount of plasmid DNA encoding the RNA reagent (or pre-

synthesized RNA reagent) is delivered into cells, resulting in transiently high levels of 

functional RNA reagents (sgRNAs, shRNAs or siRNAs) until the transfected reagents are 

diluted out through cell division and degradation. Using viral transduction, the multiplicity 

of infection (MOI) can be kept low such that most cells receive a single virus that is stably 

integrated. These distinct kinetics of reagent expression from transfection versus viral 

transduction approaches can result in differences in target specificity (discussed below).

Screening reagents in pooled formats are easier to produce owing to the availability of 

oligonucleotide library synthesis technologies82,83. In silico-designed libraries are 

synthesized as a highly complex pool of oligonucleotides. These oligonucleotides are then 

cloned as a pool to create a plasmid library that is used for virus production and screening26. 

Unlike the transfection and viral transduction options of arrayed screens, pooled screens are 

limited to low-MOI viral delivery. Stable transgene integration in pooled formats facilitates 

screen readout using NGS. This is carried out by preparing genomic DNA from the cell 
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population, sequencing across the sgRNA-encoding or shRNA-encoding regions of the viral 

integrants, and then mapping each sequencing read to a pre-compiled table of the designed 

sgRNA or shRNA library. This results in the quantification of the relative proportion of 

different integrated library constructs in the cell population.

Pooled screens are less expensive and labour intensive than arrayed screens. However, both 

approaches still require proficiency in molecular biology, tissue culture and data analysis. It 

is easier to carry out screens that require long culture times in pooled formats than in arrayed 

formats, as the latter often use small culture volumes (for example, 384-well plates) and 

require special robotic equipment for passaging many plates at once. In addition, pooled 

approaches enable screening in in vivo environments56–58,84–86. Conversely, pooled 

approaches are limited to growth phenotypes (that is, effects on cell proliferation or 

survival) or to cell-autonomous phenotypes that are selectable by cell sorting as fluorescence 

or cell surface markers.

Recent Cas9–sgRNA screens44–49 in mammalian cell culture used a pooled screening 

approach with libraries that ranged from 103 to 105 sgRNAs. All of these libraries contained 

sgRNA redundancy (multiple distinct sgRNAs that target the same gene) and targeted either 

human or mouse genomes (TABLE 1). They all used cell growth as a phenotype and 

showed both positive and negative selection results.

In positive selection screens, a strong selective pressure is introduced such that there is only 

a low probability that cells without a relevant survival-enhancing perturbation will remain 

following selection. Commonly, positive selection experiments are designed to identify 

perturbations that confer resistance to a drug, toxin or pathogen. One example is a screen for 

host genes that are essential for the intoxication of cells by anthrax toxin47. In this case, 

most sgRNAs are depleted owing to the strong selective pressure of the toxin, and only a 

small number of cells, which are transduced with sgRNAs that introduce a protective 

mutation, survive and proliferate. As very few hits are usually expected and resistant cells 

continue to proliferate, the signal is strong and easy to detect in pooled approaches.

In negative selection, the goal is to identify perturbations that cause cells to be depleted 

during selection; such perturbations typically affect genes that are necessary for survival 

under the chosen selective pressure. The simplest negative selection screen is continued 

growth for an extended period of time: in this case, the depleted cells are those carrying 

reagents that target genes that are essential for cell proliferation. These genes can be found 

by comparing the relative frequency of each sgRNA between a late time point and an earlier 

one. Negative selection screens almost always require greater sensitivity to changes in the 

representation of library reagents, as the depletion level is more modest and the number of 

depleted genes is larger (for example, essential genes). Moreover, when using Cas9 

nuclease, there is a chance that not all mutations will abolish gene function owing to small 

in-frame mutations, resulting in a mixed phenotype. One important application of negative 

selection screens is the identification of gene perturbations that selectively target cancer 

cells which harbour known oncogenic mutations; these ‘oncogene addictions’ might serve as 

possible drug targets87,88.
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Target specificity

Target specificity is an important point of consideration for all gene perturbation systems 

(TABLE 2). It consists of the ratio between on-target efficacy and unintended off-target 

effects, which is manifested by the consistency between unique reagents that target the same 

gene. On-target efficacy is a measure of how well a reagent can modify the expression of its 

intended gene target. Off-target effects include the perturbation of unintended genetic 

elements and global cellular responses. Target specificity will depend on the exact 

experimental settings. For example, as the concentrations of Cas9 and sgRNA affect target 

specificity89, transient transfections will differ from low-MOI transductions in target 

specificity.

Gene targeting reagent consistency

One of the encouraging results observed in the initial Cas9-mediated knockout screens44–47 

was that, for the top-scoring genes, a high percentage of unique sgRNAs designed to target 

the same genes were enriched following positive selection. One example is a screen carried 

out to identify gene knockouts that confer resistance to the chemotherapy etoposide45. As 

DNA topoisomerase 2A (TOP2A) creates cytotoxic DSBs during treatment with etoposide, 

TOP2A depletion results in drug resistance. Impressively, all ten distinct sgRNAs for the 

TOP2A gene showed high levels of enrichment in drug-treated samples. This level of 

consistency is rarely observed in RNAi-based screens, resulting in the generation of very 

large, high-coverage RNAi reagent libraries90. We have observed similar results44, in which 

a high percentage of sgRNAs for the top-scoring gene hits showed a strong phenotypic 

effect in a screen for resistance to the RAF inhibitor vemurafenib. We directly compared 

these results with a previous vemurafenib resistance screen using RNAi (shRNA)91. 

Interestingly, we found that the top ten hits of both screens (based on RIGER92 analysis) 

shared only a single gene and that reagent consistency was much higher for the hits in the 

Cas9 screen (78% versus 20% of reagents enriched). In another study that aimed to identify 

genes involved in susceptibility to 6-thioguanine (6-TG) and susceptibility to Clostridium 

septicum α-toxin in mouse embryonic stem cells46, both known and novel hits were found. 

Similarly, a higher percentage of sgRNAs were able to produce a phenotype than in shRNA 

knockdown when validated using individual sgRNAs for the top hits. In our positive 

selection vemurafenib screen, we also found a high validation rate with six of seven of the 

top hits reproducing the pooled screen results in arrayed-format drug titration curves44. 

Although these results are promising, more side-by-side comparisons with RNAi-based 

screens using different phenotypes and established RNAi screening platforms and 

libraries55,93 are needed. In addition, the main results to be emphasized by the recent Cas9-

knockout screens have been obtained using strong positive selection pressure. There is still a 

need for more-extensive validation and comparison to RNAi tools using negative selection 

experiments.

Despite the high consistency in strong positive selection screens, sgRNAs can still have 

large variations in efficiencies. This difference can be partially predicted by sgRNA 

sequence features45,53 and chromatin accessibility at the target site94, and can be used in the 

design of more-efficient libraries53. Although it is tempting to infer quantitative phenotypic 
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information from growth-based Cas9-knockout genetic screens (for example, assigning 

fitness measures to gene knockouts), it is important to realize that quantitative differences in 

depletion or enrichment of the sgRNA-encoding constructs might result from differences in 

sgRNA efficiencies that cause earlier or later knockouts.

Achieving high levels of reagent consistency for dCas9-based transcriptional modulation is 

more challenging, as the effect of different sgRNAs will be affected by the relative distance 

to the transcription start site in a manner that might differ between genes. For both 

repression and activation, library design was guided by the unbiased testing of sets of 

sgRNAs48,49. Reassuringly, using a similar RAF inhibition positive selection experiment, 

we observed high levels of consistency between unique activating sgRNAs49.

On-target loss of function and reagent efficacy

Continuous expression of the Cas9 nuclease using low-MOI lentiviral transduction can 

result in near-complete allelic modification owing to the irreversibility of the genomic 

modification44,46,47, as long as no transgene silencing occurs. However, error-prone DSB 

repair will result in different mutations in different cells, and there is no guarantee that every 

mutation will abolish gene function. For example, small in-frame indels might not disrupt 

gene function. Given that every cell usually has more than one gene copy, this will result in 

a multimodal distribution that consists of defined null, hetero-zygote and wild-type 

expression states (FIG. 4a). This is in contrast to RNAi and dCas9 reagents that modulate 

transcription, which are expected to have similar effects across transduced cells, resulting in 

a general shift in the continuous expression distribution (FIG. 4b). This difference will not 

be apparent from mean expression measurements in bulk cell populations. It is worth noting 

that, in practice, we and others have observed an almost complete level of gene knockout at 

the protein level44,46 for a limited set of tested proteins. This can be explained by additional 

repressive effects of Cas9 binding by steric hindrance, large in-frame deletions that still 

abolish gene function or a higher sensitivity to mutations at these loci. Interestingly, the 

distribution of indel sizes can vary between targeted loci44–46,95,96 and can be partially 

predicted by the DSB flanking sequences95, suggesting that modifications at different loci 

will result in different percentages of disruptive mutations and that such information can be 

incorporated in future libraries to achieve higher knockout efficacy.

Direct comparison of the phenotypes following Cas9 versus shRNA targeting demonstrated 

stronger effects of Cas9 in a few tested cases. This was shown both in pooled formats for 

dCas9-mediated transcriptional repression48 and in arrayed validation44,46 for the Cas9 

nuclease. This suggests a greater efficacy of individual sgRNAs than shRNA in these cases. 

An advantage of using Cas9 nuclease over transcriptional modulation approaches is that 

mutations are irreversible and are not affected by subsequent transgene silencing. However, 

in RNAi, it is easier to monitor and isolate cells that harbour the intended expression 

perturbation. This can be achieved by co-delivery of the RNAi reagent and a reporter but, 

when using Cas9, sgRNA expression does not indicate the duration and magnitude of the 

actual genetic perturbation.
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Off-target activity

Characterizing off-target effects and enhancing the specificity of both Cas9 and RNAi 

reagents continue to be major challenges for improving both research and clinical 

applications.

For Cas9-mediated genome editing, early reports demonstrated that Cas9 tolerates 

mismatches between the sgRNA and the target sequence across the whole recognition site in 

a manner that depends on the mismatch positions, number of mismatches and nucleotide 

identity73,89,97–99. In our design of genome-wide libraries, we used early empirical 

mismatch data89 to choose sgRNAs with minimal predicted off-target activity100. Much 

work is still required in order to fully characterize Cas9 off-target effects. For example, 

recent work has suggested that small insertions or deletions (‘bulges’ in the sgRNA or DNA 

target) can also be tolerated99.

Unbiased methods to detect Cas9-induced DSBs and Cas9-binding events are providing a 

more refined picture of where Cas9 binds and induces unintended modifications. Initial 

attempts to map off-target genome modifications using whole-genome sequencing revealed 

a low incidence of off-target modifications101,102. However, this approach is limited by 

sequencing coverage to detect low-frequency events. Recently, unbiased detection of 

DSBs103,104 revealed unexpected off-target activity that could not have been predicted using 

the current computational tools. Additional experiments using such unbiased methods will 

provide a better understanding of Cas9 target specificity. Another unbiased approach is 

mapping of dCas9 binding using chromatin immunoprecipitation followed by NGS (ChIP–

seq)94,105. Such studies revealed a surprisingly large number of off-target binding events 

mediated by short PAM-proximal homology between the guide RNA and target sequence. 

Reassuringly, when this off-target binding occurs for catalytically active Cas9 it is not 

typically sufficient to induce DSBs, probably because the transient binding and imperfect 

matching of sgRNA to the target sequence is insufficient for DNA cleavage106. This raises 

concern that transcriptional modulation screens might be affected by this high incidence of 

transient off-target binding. However, dCas9-mediated transcriptional repression was shown 

to be sensitive to even a few mismatches48, and genome-wide expression profiling exhibited 

specific effects for both activation and repression48,66. Moreover, large control sets of 

sgRNAs did not show any phenotypic off-target effects for both activation and repression of 

transcription48. For future library designs, specificity could be further improved using 

sgRNA modifications107,108, double-nicking approaches73,109, synthetic Cas9 protein design 

with improved specificity75,110 and the use of different Cas9 orthologues111,112.

For RNAi-based screening strategies, the characterization and avoidance of off-target effects 

have been subject to extensive investigation in recent years33,35,113,114. Early gene 

expression profiling studies revealed that unique siRNA reagents targeting the same genes 

displayed siRNA sequence-driven effects rather than signatures of target gene modulation, 

hinting at low target specificity35. This was later realized to occur as processed siRNAs 

enter the natural miRNA pathways that target transcripts with 3′ untranslated region (3′ 

UTR) sequences that have complementarity to the 5′ region of the siRNA34. Targeting can 

occur even when only eight nucleotides of the siRNA match, an effect that is similar to the 

‘seed region’ in miRNA targeting. Recently, seed effects alone were used to identify host 
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factors that are required for the infection of human cells by various different pathogens115. 

Although these reports were based on the transfection of large amounts of synthetic siRNA, 

gene silencing using different RNAi reagents, such as low-MOI transductions of shRNA or 

shRNAmir, would not necessarily be prone to the same level of off-target effects. Ongoing 

efforts to design algorithms for the more accurate prediction of targets of both endogenous 

miRNAs and exogenous RNAi triggers can improve both the design of RNAi reagent 

libraries and data analysis116. Finally, advances in the mechanistic understanding of miRNA 

biogenesis117,118 can facilitate improved design of RNAi reagents and expression vectors 

that will avoid imprecise Dicer processing and produce higher levels of functional siRNAs.

To summarize, although off-target effects are a major concern for both Cas9 and RNAi 

approaches, they depend on the exact experimental settings and can be minimized by better 

mechanistic understanding and refinement of the currently used tools. Off-target effects are 

a major concern in clinical applications: when attempting to correct a disease-associated 

gene in a patient, a rare off-target mutation could potentially be toxic or oncogenic. By 

contrast, in genetic screens, false-positive hits owing to off-target perturbations can be easily 

avoided by requiring that multiple distinct reagents targeting the same genetic element 

display the same phenotype.

Practical considerations

Many of the technical details for conducting a genome-scale screen using Cas9 are similar to 

RNAi screens. These have been extensively discussed in other reviews3,26,30,55; thus, we 

focus here on topics that are specific to the use of Cas9.

Cas9 delivery

The most commonly used Cas9 protein, from the bacterium S. pyogenes, is a large protein 

that is encoded by a 4.1-kb coding sequence. This suggests two delivery approaches for 

Cas9-mediated genetic screens. The first involves the delivery of only Cas9 (viral 

integration or knock-ins) to generate a stable Cas9-expressing, clonal or polyclonal cell line, 

followed by cell expansion and the delivery of an sgRNA-only library. Clonal cell lines have 

the advantage that a line with high Cas9 expression levels can first be selected. However, 

generating a clonal cell line is not necessarily possible for all cell lines, and cells can 

accumulate mutations during expansion from a single cell. The second approach comprises 

simultaneous delivery of both Cas9 and sgRNAs using library vectors that encode both 

components. Although the first approach can be easily applied in immortalized cell lines, it 

is less feasible in primary cells that are not easily expanded in culture. For the second 

approach, delivery of both Cas9 and sgRNA in a single virus is challenging because viral 

titres can be low owing to the size of the cas9 gene. We have recently improved the titre of 

the single virus system100, thus enabling easier screening applications in primary cells or 

cells that are difficult to transduce. An additional option is to use a cas9-transgenic 

mouse119, which circumvents the need for Cas9 delivery for in vivo or mouse-derived 

primary-cell screening applications.

Adeno-associated virus (AAV) vectors have advantages for in vivo and gene therapy 

applications, as they do not integrate into the genome and are thus less likely to induce 
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oncogenesis. For pooled screening applications, the non-integrating nature of AAV vectors 

is less favourable because genomic integration is used to read out the abundance of the 

different perturbation reagents in a heterogeneous population of selected cells. However, 

AAV-based pooled screens might have advantages in certain in vivo applications: for non-

dividing cells, the viral episome can be used for NGS readout. As the combined size of S. 

pyogenes Cas9 and the sgRNA cassette is already near the packaging limit of AAV, efficient 

in vivo editing by Cas9 AAV delivery requires either the delivery of two separate AAV 

vectors120 or a single vector system using a smaller Cas9 orthologue from the bacterium 

Staphylococcus aureus, which we have recently adapted for in vivo genome editing111.

Culture time before selection for efficient targeting

Success of Cas9 nuclease knockout screens requires a high genomic modification rate with a 

culture time that will suffice to deplete most of the proteins. Measurements of allelic 

modification rates in the first published screens demonstrated close to complete allelic 

modification after approximately 10 days across several gene targets44–47. There is no 

guarantee that all cell lines will display similar results, and it is important to measure allelic 

modification rates as a function of time across several genomic loci before using a cell line 

for screening.

Additional time needs to be added for the depletion of perturbed proteins. In contrast to 

RNAi that acts directly on the mRNA by actively degrading it, both Cas9 nuclease and 

dCas9-mediated protein depletion modulate transcription in the nucleus. This is combined 

with endogenous mRNA degradation and dilution owing to cell proliferation, and results in 

a slower change in mRNA levels (FIG. 1). This difference might be small in rapidly dividing 

cells, but depleting stable proteins in post-mitotic or even slowly dividing cells can require 

longer culture times post-transduction. The mode of delivery can also have an effect on the 

required time for gene perturbation. For example, arrayed format transfection of synthetic 

siRNA libraries121 results in faster knockdown than lentiviral transduction, which requires 

subsequent transgene expression and nucleolytic processing to generate mature siRNAs.

Interaction with cellular machinery

The dependence on endogenous cellular pathways can introduce limitations when designing 

a perturbation screen. RNAi-based tools depend on an active endogenous RNAi pathway, 

whereas Cas9 tools act by exogenous delivery of all components (with the exception of 

endogenous NHEJ mechanisms, which are required for indel formation in knockout screens 

but which are not needed thereafter). The RNAi pathway has been associated with a wide 

variety of cellular processes ranging from host–pathogen interactions and cellular 

differentiation, to cancer122. Additionally, genes that are directly involved in RNAi activity 

cannot be continuously targeted efficiently using synthetic RNAi reagents; therefore, they 

may be missed if they are involved in the screened phenotypes. dCas9-mediated 

transcriptional repression screens can serve as a good alternative for knockdown screens in 

these cases, as this type of silencing is expected to use fewer endogenous pathways (FIG. 2), 

thus reducing the chance of having disruptive interactions between the targeted genetic 

element and the targeting tool.
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An additional concern is the global effect of the targeting reagents on cellular physiology. 

The delivery of large amounts of exogenous siRNAs might saturate the endogenous RNAi 

system, resulting in additional toxic effects33. Although this is a major concern in arrayed 

siRNA transfection experiments, it might be less relevant to low-MOI viral-based shRNA or 

shRNAmir delivery. Cas9 expression in cells, and the external induction of DSBs, has not 

been studied in depth, and more work is still needed to establish that there are no disruptive 

or toxic effects.

Challenges and future outlook

Initial Cas9-mediated screens displayed remarkable results, with high levels of guide 

consistency, genomic modification, hit confirmation and strong phenotypic effects44–49. 

Despite these promising results, there are many aspects of using Cas9 for functional 

genomics that require further study. These include investigation into the cellular response to 

Cas9 delivery and activity in cells, and the demonstration of the same high levels of sgRNA 

consistency across a wider range of cell models and phenotypes. There is also a need for the 

unbiased estimation of false-negative rates, as it is not clear how many of the sgRNA 

reagents in a particular computationally designed library actually perturb the intended 

targets. Although the high consistency of hit sgRNAs per gene suggests that this percentage 

is quite high, there is still a need for an unbiased test across multiple genomic locations. In 

addition, negative selection screens for growth phenotypes remain a challenge, which might 

be addressed by improving the efficiency of sgRNAs53, developing more-sensitive screen 

readout methods and improving the statistical analysis tools.

Knockout, knockdown and activation screens are complementary methods (TABLE 2) that 

together will contribute to a more complete understanding of biological systems. For 

example, genes that retain function at low expression levels will be unlikely to display an 

obvious phenotype upon knockdown and might therefore be missed in knockdown screens. 

By contrast, genes that are essential for cell viability cannot be assessed for their 

contribution to additional cellular phenotypes using complete knockout; partial knockdown 

will be useful in these cases. In addition, as gene regulatory networks are highly inter 

connected and contain multiple feedback loops, the cellular phenotype in response to 

knockout and knockdown can be markedly different.

Screening opportunities using Cas9 extend beyond coding genes. Custom-designed sgRNA 

libraries can be used for the unbiased discovery of regulatory sequences by tiling sgRNAs 

throughout a non-coding genomic region. The delivery of multiple sgRNAs42,72,123 can 

facilitate screening for epistatic effects between pairs of genes124 or can be used to induce 

more-disruptive genetic modifications such as microdeletions. It is also possible to study the 

effects of perturbing non-coding RNAs. In this case, nuclease-induced DSBs might be 

suboptimal, as translational frameshift and NMD are less relevant. Instead, deletion 

approaches using two sgRNAs, or effective dCas9-mediated transcriptional repression, 

might be more suitable. In addition, fusing Cas9 to additional effector domains can facilitate 

high-throughput screens for phenotypic effects of additional epigenetic modifications68. 

Another type of high-throughput assay used Cas9 combined with HDR to conduct saturation 
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mutagenesis experiments within an endogenous locus, thus expanding the possibilities of 

studying sequence-encoded regulatory information125.

NGS has revolutionized our ability to read information from the genome, including the 

DNA sequence itself, the state of the transcriptome and the epi-genome126,127. With these 

new insights into the genome, there is a need to understand the function of genetic elements 

through perturbation. Cas9-mediated screens will have an important role in drawing causal 

links between genetic architecture and phenotypes, and will enhance our ability to decipher 

cellular function in health and disease.
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Glossary

Small 
interfering 
RNA

(siRNA). RNA molecules that are 21–23 nucleotides long and that are 

processed from long double-stranded RNAs;. they are functional 

components of the RNA-induced silencing complex (RISC). siRNAs 

typically target and silence mRNAs by binding perfectly complementary 

sequences in the mRNA and causing their degradation and/or 

translational inhibition.

Short hairpin 
RNA

(shRNA). Small RNAs forming hairpins that can induce sequence-

specific silencing in mammalian cells through RNA interference, both 

when expressed endogenously and when produced exogenously and 

transfected into the cell.

microRNA (miRNA). Small RNA molecules processed from hairpin-containing 

RNA precursors that are produced from endogenous miRNA-encoding 

genes. mi RNAs are 21–23 nucleotides in length and, through the RNA-

induced silencing complex (RISC), they target and silence mRNAs 

containing imperfectly complementary sequences.

Indel (Insertion and deletion). Mutations due to small insertions or deletions of 

DNA sequences.

Single guide 
RNA

(sgRNA). An artificial fusion of CRISPR (clustered regularly 

interspaced short palindromic repeat) RNA (crRNA) and transactivating 

crRNA (tracrRNA) with critical secondary structures for loading onto 

Cas9 for genome editing. It functionally substitutes the complex of 

crRNA and tracrRNA that occurs in natural CRISPR systems. It uses 

RNA–DNA hybridization to guide Cas9 to the genomic target.
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Nonsense-
mediated 
decay

(NMD). An mRNA surveillance mechanism that degrades mRNAs 

containing nonsense mutations to prevent the expression of truncated or 

erroneous proteins.

CRISPRi An engineered transcriptional silencing complex based on catalytically 

inactive Cas9 (dCas9) fusions and/or single guide RNA (sgRNA) 

modification.

CRISPRa An engineered transcriptional activation complex based on catalytically 

inactive Cas9 (dCas9) fusions and/or single guide RNA (sgRNA) 

modification.

False-positive Pertaining to screening results: in a screen that results in a set of putative 

gene hits associated with a phenotype, a false positive is a gene that is 

predicted to be associated but that is actually not associated with the 

phenotype.

False-
negative

Pertaining to screening results: in a screen that results in a set of putative 

gene hits associated with a phenotype, a false negative is a true hit that 

was missed.
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Figure 1. Molecular mechanisms underlying gene perturbation via lentiviral delivery of RNA 
interference reagents, Cas9 nuclease and dCas9 transcriptional effectors
a | Lentiviral transduction begins with the fusion of virus particles with the cell membrane 

and the insertion of the single-stranded RNA (ssRNA) viral genome into the cell cytoplasm. 

A reverse transcriptase then converts the ssRNA genome into double-stranded DNA 

(dsDNA) that is imported into the nucleus and integrates into the host cell genome. Short 

hairpin RNA (shRNA) or single guide RNA (sgRNA) transgenes are then expressed from an 

RNA polymerase III (Pol III) or Pol II promoter. b | For shRNA transgenes, maturation 
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involves a series of nucleolytic processing steps that result in cytoplasmic small interfering 

RNA (siRNA) with sequence complementarity to the target mRNA. Drosha processing is 

required for reagents consisting of shRNAs embedded in microRNA precursors 

(shRNAmirs) but is usually bypassed for simple stem–loop shRNA reagents. Gene silencing 

is achieved by siRNA recruitment to the RNA-induced silencing complex (RISC) for 

mRNA degradation and translational inhibition. c,d | By contrast, both the Cas9 nuclease 

and catalytically inactive Cas9 (dCas9)-mediated transcriptional modulation act in the 

nucleus. The transgene-encoded Cas9–sgRNA complex targets a genomic locus through 

sequence complementarity to the 20-bp sgRNA spacer sequence (part c). For Cas9 nuclease-

mediated knockout, double-strand break (DSB) formation is followed by non-homologous 

end-joining (NHEJ) DNA repair that can introduce an indel mutation and a coding 

frameshift. For dCas9-mediated transcriptional modulation, the modification of expression 

(white arrows) depends on the exact type of fusion of either dCas9 or sgRNA (part d) (FIG. 

2). These induced nuclear events, together with endogenous transcript degradation and 

dilution through cell division, will result in a new steady-state expression level in the 

cytoplasm.
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Figure 2. dCas9-mediated transcriptional modulation
The different ways in which catalytically inactive Cas9 (dCas9) fusions have been used to 

synthetically repress (CRISPRi) or activate (CRISPRa) expression are shown. All 

approaches use a single guide RNA (sgRNA) to direct dCas9 to a chosen genomic location. 

A | To achieve transcriptional repression, dCas9 can be used by itself (whereby it represses 

transcription through steric hindrance)64–68 (part Aa) or can be used as part of a dCas9–

KRAB transcriptional repressor fusion protein48,66 (part Ab). B | For transcriptional 

activation, various approaches have been implemented that involve the VP64 transcriptional 

activator. One approach is a dCas9–VP64 fusion protein68,70–73 (part Ba). In an alternative 

method aimed at signal amplification, dCas9 is fused to a repeating array of peptide 

epitopes, which modularly recruit multiple copies of single-chain variable fragment (ScFv) 

antibodies fused to transcriptional activation domain48,74 (part Bb). Another approach is a 

dCas9–VP64 fusion protein together with a modified sgRNA scaffold with an MS2 RNA 

motif loop. This MS2 RNA loop recruits MS2 coat protein (MCP) fused to additional 

activators such as p65 and heat shock factor 1 (HSF1)49 (part Bc). C | Multiplexed 

activation and repression was implemented using an array of modified sgRNAs with 

different RNA recognition motifs (MS2, PP7 or com) and corresponding RNA-binding 

domains (MCP, PCP or Com) fused to different transcriptional effector domains (KRAB or 

VP64)76. TSS, transcriptional start site. Parts Bb and C adapted from REF. 48 and REF. 76, 

respectively, Cell Press; part Bc adapted from REF. 49, Nature Publishing Group.
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Figure 3. Screening strategies in either arrayed or pooled formats
Genetic screens follow two general formats that differ in the way in which the targeting 

reagents are constructed and how cell targeting and readout is carried out. a | In arrayed 

screens, reagents are separately synthesized and targeting constructs are arranged in 

multiwell plates. Cell targeting is also conducted in multiwell plates using either transfection 

or viral transduction. Screen readout is based on cell population measurements in individual 

wells. b | In pooled screens, reagents are usually synthesized and constructed as a pool. Viral 

transduction limits transgene copy number (ideally, one perturbation per cell), and viral 
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integration enables readout through PCR and next-generation sequencing. Readout is based 

on the comparison of the abundance of the different genomically integrated transgene 

reagents between samples. MOI, multiplicity of infection; sgRNA, single guide RNA; 

shRNA, short hairpin RNA; siRNA, small interfering RNA.
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Figure 4. Distinct expression distributions for knockdown and knockout of a gene
a | Theoretical target gene expression distribution following knockout mediated by 

lentiviral-delivered Cas9 nuclease is shown. This assumes an 80% level of allelic mutations 

that abolish gene function, combining out-of-frame and large deletions, close to complete 

allele modification rate and diploid cells. Although most cells will have a complete 

knockout in both alleles, some cells will retain at least one copy of a functional allele. b | 

Theoretical target gene expression distribution following catalytically inactive Cas9 

(dCas9)-mediated transcriptional repression or RNA interference (RNAi)-mediated 

Shalem et al. Page 25

Nat Rev Genet. Author manuscript; available in PMC 2015 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



knockdown is shown. All transduced cells experience a similar perturbation that results in a 

shift in the target gene expression distribution.

Shalem et al. Page 26

Nat Rev Genet. Author manuscript; available in PMC 2015 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shalem et al. Page 27

T
ab

le
 1

E
xp

er
im

en
ta

l p
ar

am
et

er
s 

of
 r

ec
en

t C
as

9-
m

ed
ia

te
d 

ge
ne

tic
 s

cr
ee

ns

C
as

9 
de

liv
er

y
C

as
9 

pr
ot

ei
n

sg
R

N
A

lib
ra

ry
 s

iz
e

N
um

be
r 

of
ta

rg
et

ed
 g

en
es

C
ov

er
ag

e 
(s

gR
N

A
s

pe
r 

ge
ne

)
C

el
l

lin
es

Sp
ec

ie
s

P
os

it
iv

e 
or

ne
ga

ti
ve

se
le

ct
io

n

R
ef

s

C
lo

na
l i

so
la

tio
n 

of
st

ab
ly

 in
te

gr
at

ed
 c

el
ls

C
as

9 
nu

cl
ea

se
73

,1
51

7,
11

4
10

 a
nd

 ti
lin

g 
sg

R
N

A
s

fo
r 

ri
bo

so
m

al
 g

en
es

K
B

M
7;

H
L

60
H

um
an

B
ot

h
45

D
el

iv
er

y 
w

ith
 th

e
sg

R
N

A
 li

br
ar

y
C

as
9 

nu
cl

ea
se

64
,7

51
18

,0
80

3 
or

 4
 o

n 
av

er
ag

e
A

37
5;

H
U

E
S6

2
H

um
an

B
ot

h
44

C
lo

na
l i

so
la

tio
n 

of
st

ab
ly

 in
te

gr
at

ed
 c

el
ls

C
as

9 
nu

cl
ea

se
87

,8
97

19
,1

50
4 

on
 a

ve
ra

ge
m

E
SC

M
ou

se
B

ot
h

46

C
lo

na
l i

so
la

tio
n 

of
st

ab
ly

 in
te

gr
at

ed
 c

el
ls

C
as

9 
nu

cl
ea

se
87

3
29

1
3

H
eL

a
H

um
an

Po
si

tiv
e

47

Po
ly

cl
on

al
 s

el
ec

te
d 

ce
ll

Po
pu

la
tio

n
dC

as
9 

re
pr

es
si

on
co

m
pl

ex
20

6,
42

1
15

,9
77

10
 p

er
 T

SS
K

56
2

H
um

an
B

ot
h

48

Po
ly

cl
on

al
 s

el
ec

te
d 

ce
ll

Po
pu

la
tio

n
dC

as
9 

ac
tiv

at
io

n
co

m
pl

ex
19

8,
81

0
15

,9
77

10
 p

er
 T

SS
K

56
2

H
um

an
B

ot
h

48

Po
ly

cl
on

al
 s

el
ec

te
d 

ce
ll

Po
pu

la
tio

n
dC

as
9 

ac
tiv

at
io

n
co

m
pl

ex
70

,2
90

23
,4

30
3 

pe
r 

T
SS

A
37

5
H

um
an

B
ot

h
49

dC
as

9,
 c

at
al

yt
ic

al
ly

 in
ac

tiv
e 

C
as

9;
 m

E
SC

, m
ou

se
 e

m
br

yo
ni

c 
st

em
 c

el
l; 

sg
R

N
A

, s
in

gl
e 

gu
id

e 
R

N
A

; T
SS

, t
ra

ns
cr

ip
tio

n 
st

ar
t s

ite
.

Nat Rev Genet. Author manuscript; available in PMC 2015 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shalem et al. Page 28

T
ab

le
 2

Fe
at

ur
es

 o
f 

th
e 

di
ff

er
en

t p
er

tu
rb

at
io

n 
to

ol
s 

us
ed

 f
or

 ta
rg

et
ed

 g
en

et
ic

 s
cr

ee
ns

L
os

s 
of

 f
un

ct
io

n
G

ai
n 

of
 f

un
ct

io
n

C
as

9 
nu

cl
ea

se
C

R
IS

P
R

i
R

N
A

i t
oo

ls
C

R
IS

P
R

a
cD

N
A

ov
er

ex
pr

es
si

on

T
yp

e 
of

pe
rt

ur
ba

ti
on

In
de

l m
ut

at
io

n 
in

th
e 

ta
rg

et
 D

N
A

 th
at

ge
ne

ra
lly

 r
es

ul
ts

 in
 a

co
m

pl
et

e 
kn

oc
ko

ut
ow

in
g 

to
 a

 c
od

in
g

fr
am

es
hi

ft

R
ep

re
ss

io
n 

of
 g

en
e

ex
pr

es
si

on
 b

y
dC

as
9-

m
ed

ia
te

d
tr

an
sc

ri
pt

io
na

l
in

hi
bi

tio
n

R
ep

re
ss

io
n 

of
 g

en
e 

ex
pr

es
si

on
by

 ta
rg

et
in

g 
th

e 
m

R
N

A
m

ol
ec

ul
e 

fo
r 

de
gr

ad
at

io
n 

an
d

tr
an

sl
at

io
na

l i
nh

ib
iti

on

A
ct

iv
at

io
n 

of
 g

en
e

ex
pr

es
si

on
 b

y
dC

as
9-

m
ed

ia
te

d
re

cr
ui

tm
en

t o
f

tr
an

sc
ri

pt
io

na
l

ac
tiv

at
io

n 
do

m
ai

ns
 to

T
SS

s

E
xo

ge
no

us
ov

er
ex

pr
es

si
on

of
 c

lo
ne

d 
cD

N
A

co
ns

tr
uc

ts

E
xp

ec
te

d
of

f-
ta

rg
et

ef
fe

ct
s

A
dd

iti
on

al
un

ex
pe

ct
ed

 in
de

ls
 in

th
e 

ge
no

m
e

R
ep

re
ss

io
n 

of
ad

di
tio

na
l g

en
es

 a
nd

ef
fe

ct
s 

on
 c

hr
om

at
in

R
ep

re
ss

io
n 

of
 a

dd
iti

on
al

 m
R

N
A

s
ow

in
g 

to
 p

ar
tia

l ‘
se

ed
’ 

m
at

ch
in

g
an

d 
im

pr
ec

is
e 

D
ic

er
 p

ro
ce

ss
in

g;
gl

ob
al

 e
ff

ec
ts

 o
w

in
g 

to
sa

tu
ra

tio
n 

of
 e

nd
og

en
ou

s 
R

N
A

i
m

ac
hi

ne
ry

 (
m

os
tly

 r
el

ev
an

t t
o

si
R

N
A

 tr
an

sf
ec

tio
ns

)

E
xp

re
ss

io
n 

of
ad

di
tio

na
l g

en
es

 a
nd

ef
fe

ct
s 

on
 c

hr
om

at
in

N
ot

 m
an

y
ge

ne
-s

pe
ci

fi
c

of
f-

ta
rg

et
 e

ff
ec

ts
;

gl
ob

al
 e

ff
ec

ts
 o

n
tr

an
sl

at
io

n 
ow

in
g 

to
st

ro
ng

 e
xp

re
ss

io
n 

of
a 

si
ng

le
 g

en
e

O
n-

ta
rg

et
ef

fi
ca

cy
W

ith
 c

on
tin

uo
us

ex
pr

es
si

on
,

ne
ar

-c
om

pl
et

e
al

le
lic

 m
od

if
ic

at
io

n
ca

n 
be

 a
ch

ie
ve

d 
in

 a
sh

or
t t

im
e 

fr
am

e

In
hi

bi
tio

n 
le

ve
l

de
pe

nd
s 

on
 th

e
ch

oi
ce

 o
f 

sg
R

N
A

 a
nd

th
e 

ba
sa

l e
xp

re
ss

io
n

le
ve

l o
f 

th
e 

ta
rg

et
ge

ne

R
ep

re
ss

io
n 

ef
fi

ca
cy

 d
ep

en
ds

 o
n

th
e 

ch
oi

ce
 o

f 
R

N
A

i t
oo

l a
nd

 th
e

sp
ec

if
ic

 ta
rg

et
in

g 
se

qu
en

ce

A
ct

iv
at

io
n 

le
ve

l
de

pe
nd

s 
on

 th
e 

ch
oi

ce
of

 s
gR

N
A

 a
nd

 th
e 

ba
sa

l
ex

pr
es

si
on

 le
ve

l o
f 

th
e

ta
rg

et
 g

en
e

H
ig

h 
ex

pr
es

si
on

of
 m

os
t c

D
N

A
co

ns
tr

uc
ts

 o
w

in
g 

to
ex

pr
es

si
on

 f
ro

m
 th

e
sa

m
e 

pr
om

ot
er

C
on

st
it

ut
iv

e
ve

rs
us

co
nd

it
io

na
l

ex
pr

es
si

on

C
as

9 
ex

pr
es

si
on

 c
an

be
 m

ad
e 

co
nd

iti
on

al
C

as
9 

ex
pr

es
si

on
 c

an
be

 m
ad

e 
co

nd
iti

on
al

O
nl

y 
Po

l I
I-

dr
iv

en
 R

N
A

i r
ea

ge
nt

s
ca

n 
be

 c
on

di
tio

na
lly

 e
xp

re
ss

ed
C

as
9 

ex
pr

es
si

on
 c

an
 b

e
m

ad
e 

co
nd

iti
on

al
cD

N
A

 c
on

st
ru

ct
s

ca
n 

be
 c

on
di

tio
na

lly
ex

pr
es

se
d

R
ev

er
si

bi
lit

y 
of

pe
rt

ur
ba

ti
on

Ir
re

ve
rs

ib
le

R
ev

er
si

bl
e

R
ev

er
si

bl
e

R
ev

er
si

bl
e

R
ev

er
si

bl
e

R
ef

s
44

–4
7

48
1

48
,4

9
69

dC
as

9,
 c

at
al

yt
ic

al
ly

 in
ac

tiv
e 

C
as

9;
 P

ol
 I

I,
 R

N
A

 p
ol

ym
er

as
e 

II
; R

N
A

i, 
R

N
A

 in
te

rf
er

en
ce

; s
gR

N
A

, s
in

gl
e 

gu
id

e 
R

N
A

; s
iR

N
A

, s
m

al
l i

nt
er

fe
ri

ng
 R

N
A

; T
SS

, t
ra

ns
cr

ip
tio

n 
st

ar
t s

ite
.

Nat Rev Genet. Author manuscript; available in PMC 2015 November 01.


